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LIMIT FORM OF THE EQUATION OF ANISOTROPIC
HEAT CONDUCTION IN A LAYER

A. 1. Moshinskii UDC 53.01

Consideration is given to the problem of asymptotic reduction to a two-dimensional equation of an equation
that is three-dimensional along the coordinates and describes the process of heat propagation in an
anisotropic material. The region of heat transfer is a layer that is thin along one coordinate. It is assumed
that the matrix of the thermal diffusivities depends on the spatial coordinates. The effective thermal-
diffusivity matrix is represented in the constructed equivaleni heat conduction equation.

Introduction. In the case of heat and mass transfer equations, cases are not infrequent when, because of
difficulty of analysis, it is desirable to switch over to a simplified model. This is especially true if averaged (integral)
characteristics of the process rather than a detailed field of the temperatures and concentrations in a body are a
matter of interest to researchers. In these cases, obtaining simplified equations of the process that are quite exact
for practical needs is an attractive feature. It is required of the simplified models that they be similar in a sense to
the initial model and enable us to find correction equations when needed.

A good example of this simplification is the Taylor model of effective diffusion (heat conduction) [1, 21,
which has gained wide acceptance in describing the transfer of heat and mass in channels, apparatuses, etc. For
the average cross-sectional concentration of a substance, Taylor proposed an equation with an effective diffusion
(dispersion) coefficient that was calculated from the velocity profile in a channel.The first consideration in
transformation of the problem of [1, 2] is the possibility of substantiating it by certain physical and mathematical
arguments (computations). This proved to be very attractive for simplification of a mathematical description of heat
and mass transfer processes, owing to which the Taylor method was generalized and was improved in different
directions (for example, [3-6 ]). In the problem proposed below (as in the Taylor problem [1-2]), direct averaging
of the initial equations does not lead to a desirable result, since terms that cause the averaged problem to be open
remain in the equation. Therefore, the main problem will be substantiation of the averaging and obtaining a closed
system of equations (equation), error detection, and indication of further steps (if they are necessary) to refine the
result.

Formulation of the Problem. Let us analyze the process of propagation of heat in a plane layer of material
that is anisotropic as far as the transfer of heat is concerned. More precisely, the region of heat transfer is limited
by two planes Z = 0 and Z = H and, in general, extends infinitely in the X and Y directions. In fact, we could
prescribe a closed cylindrical surface with the equation S(X, ¥) = 0 that would serve as the boundary of the
heat-transfer region together with the noted planes and take a standard boundary condition at this boundary.
However this is of no significance for the subsequent presentation. The process of heat propagation in the region
is described by the equation

=% (a,w (X, %, 2) 5’—;—) M

where, as is often done in tensor and matrix calculi, summation from unity to three is carried out with respect to
the double subscript (in this case, 4 and v). Here for convenience we assumed X; = X, X3 =Y, and X3 = Z; Ay
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(X, Y, Z) is the thermal-diffusivity tensor, which will be assumed to meet the requirements of nonequilibrinm
thermo dynamics [7-9]), namely, the symmetry q, = @, (the Onsager relation) and positive definiteness:
ay,};ﬂ&, b /CEMI,-'/4 (« > 0). The latter requirement is associated with the dissipative nature of the process and the
production of entropy [7, 8]. As the boundary conditions for Eq. (1) we take the following conditions:

oT
il aXv Z=0,H

=0, 2)

TlX,Y—>1—eo< o, 3

Boundary condition (2) expresses the absence of heat flux in the direction of the external normal to the boundaries
Z =0 and Z = H while condition (3) expresses the boundedness of solutions at large distances from the coordinate
origin. The extension of the region in the X and Y directions is of no fundamental importance for us, i.e., cbndition
(3) is written for concreteness, to make the formulation of the probiem complete. In it, we also adopt the initial
condition

Tleo=T,(X, Y, 2), 4

We note that problems similar to (1)-(4) can arise when mass-transfer problems and the processes of
transfer in porous media are investigated [9, 15].

Analysis of the Problem. In this work, simplification of problem (1)-(4) will be the main objective for us.
The basic supplementary conditions are (2). In what follows we will indicate complications in the formulation of
problem (1)-(4) that do allow for a simplified asymptotic formulation according to the scheme presented.

Let us introduce the operation of averaging of a function F:

(F(X, Y, 1)) = F(X,Y,Z,1)dZ. &)

o =X

1
H

It should be noted that in the particular case when a,; = 0 and a;; = a,.(X, Y, Z) while the remaining
components of the tensor a,, are independent of Z, averaging Eq. (1) and conditions (3) and (4) in view of boundary
conditions (2) leads directly to a reduction in the dimensionality of the problem, i.c., we obtain a closed problem
for the average, according to relationship (5), temperature. Our interest is in a more general, nontrivial case.
However we use the specific properties of the region of integration of Eq. (1) when the scales of the corresponding
variables differ in magnitude for the region distinctly less extended in the Z direction than in the X and Y directions.
More specifically, we write Eq. (1) and boundary condition (2) according to the formulas:

X Y z a a, H
X =x=—), Xp=y=—, Xy =2z="—, A‘uV:ﬂ’ t:’[—z, _, (6)
L* L* H a* * *

in dimensionless form

29T _ 9 oT d aT\ 9 oT 2 9 aT
9 _ 9 {, 22 94, 9} 9 4 22 B i 7
£ 9t ez (AZZ az) te [62 (Alz ax,.) *ox, (Alz 62)] T ax (Au axj) ’ )

where now and in what follows we will assume that summation from one to two is with respect to the double Latin
subscript (with respect to i in the terms for ¢ and with respect to i and j in the term for ¢%). For example,

2
AydT/dx; = 2 A;oT/ ox;. If the Greek subscript (as 4 and v in (1)) occurs twice summation is from one to three
j=1

with respect to it. We put emphasis on the subscript z to the z coordinate; we cannot sum with respect to it.
Boundary condition (2) in the variables of (6) acquires the form
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The time scale in (6) is such that the equation of effective heat conduction is constucted with only two spatial
coordinates x and y. Therefore, the formula for ¢ is quite natural. Conditions (3) and (4) retain their form in the
dimensionless variables of (6) while in the formula for averaging (5) the upper limit in the integral will be unity,
and therefore the factor 1/H is made unnecessary. By virtue of the above we will not rewrite formulas (3), (4),
and (5).

When heat propagates in a layer € << 1, as a rule. Therefore, the perturbation method [11, 12]is a natural
method for seeking a solution of the problem for Eq. (7) with supplementary conditions (3), (4), and (8). Thus,
we seek a solution of the noted problem in the form of the expansion

T=Tyg(x,y 2z ) +eT (x, 9,2, 1) + £2T2 9,2z, 0+ ..., 9)

substituting which into Eq. (7) and boundary condition (8), we obtain the sequence of problems

9 (A,,0Ty/ 0z T
9 (450To/02) _ 0, A, —0 =0; (10)
9z 9z | z=0;1

3z (42237 | T 5z (A ax; | ax; \Tiz 9z ) A5+ A dx; o =0; (11)

z=0,
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IT, 0Ty—
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after terms of the same order in ¢ are grouped.

Each equation of (11) and (12) for the functions T has a certain necessary condition for the existence of
a solution. We denote the sum of all the terms in the right-hand side of Eq. (12) by the symbol F;. Then, averaging
the equation

0 (Az 0T,/09) 0 (Ay 0Ty /0x)
dz dz Tk

and taking into account boundary condition (12), we obtain

(F)=0, k=2,3,.... (13)

Integration of Eq. (10) with allowance for the boundary conditions indicatcs the independence of the
variable Tg on the coordinate z. We denote Tg = G(x, ¥, #). In such an event, the right-hand side of Eq. (11) is
zero and we can integrate it directly once. Doing this with allowance for boundary condition (11), dividing the
result by the positive A,,, and integrating with respect to z once again, we arrivc at the following relationship for
the function T:

0 oG = A,
T, =T,(x,y 1) —— dz , (14)
1 1 ( ) 6xi .(l)‘ Azz

where T(l)(x, y, 1) is a function of the indicated variables that remains to be defined.
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Here we consider only the equation for the principal approximation of expansion (9), for which purpose it
will suffice to take & = 2 in (13) with allowance for the relationships obtained for the variables T and T}.

From relations (13) and (14) we have
AiA; \ 9G
A, axj-

oG ] oG
R AT
where it is taken into account that T(l) is independent of z. The form of Eq. (15) yiclds the formula for the tensor

= 1
ot ax; ’ (15)
of the effective thermal diffusivities

3
- 9x;

Ay y) = (iﬁ—%“i> (16)

It is easily established that the elements of the matrix 2,-] are the minors of the matrix A, divided by the
component Az, (here we allow for the symmetry of the matrix A,,). We note that the principal minors of the matrix
Ajj, by virtue of the Sylvester number [1§\, 14], are positive for the matrix Ay, (including the element 4,,);
therefore, diagonal elements of the matrix A;; will be positive. Since the inverse matrix A;V‘ of a positive-definite
matrix is also positive-definite [13, 14 ], taking into account that its components are the minors of the parent matrix
divided by its determinant, which is positive, we can easily see that the determinant of the matrix ﬁij (16) is positive.
Thus, the properties of symmetry and positive definiteness are extended to the matrix ﬁ,-j although it has four
components instead of nine. This suggests that the matrix 2,7 can qualify well as the thermal-diffusivity matrix.

The asymptotic analysis performed shows that a layer of anisotropic material acts as a new anisotropic
(plane) body when the number of space variables is reduced by unity.

Determination of the Initial Condition for Eq. (15). For a complete formulation of the problem, we need to
state the initial condition for Eq. (15), which will be written in the final form

3G _ 9 (~ oG
9t ax; (Aii 0xj) ' (17)

We note that, in fact, we constructed an "external” [11l, 12] expansion suitable for description of a process with
rather large times. The absence of initial condition (4) in the formulation of thc problem for the functions T;
indicates the special (singular) behavior of this expansion. The initial condition dropped out because of the large
scale selected in the dimensionless scale = 1/¢2 in making the time 7 dimensionless according to (6). To describe
the behavior of a solution with small times, we need to introduce the “"contracted” time § = t/¢* and to construct a
new expansion [11, 12]. The new "internal” (11, 12] problem will be written in the following manner:

IT _ 2 aT ? aT\ . @ aT 2 9 T
e (Azz 82) Te \:Gz (Afz axi) T ox, (Aiz az” e gy (Aff axj) ’

orT
+ €4, o
z=0;1 i

=0:1 =0, T1C=0 =Ty (x5 2). (18)

As before we restrict ourselves to the principal approximation of the internal expansion
T = TO (x,¥, 208 + 671 (x,y,2,8) + ..., 19

where the over bar denotes an internal solution. An equation for the function T of the principal approximation is
obtained by the simple substitution of ¢ = 0 into (18). Thus, we have the problem

T, 0 ( a?o) B Ty
Br tzz

o ~ 9z \“"%= oz 9z

=0, ?OIC:O =T,(x ¥ 2). (20)
z=0;1

For our purposes (joining with the solution of external problem (9)), it will suffice to determine only the average
value of the function Tg: (To). To do this, we average Eq. (20). As before we obtain a zero average value of the
operator in the right-hand side. Hence we find
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here we resorted to initial condition (20). Now, employing (21), we use the principle of limit joining [11, 12] for
the terms average of the principal terms of the external and internal expansions
lim (Tg) =lim G (x,y 8) = G|,—q = lim (T} =(T,)) =G, (x,y). (22)
-0 10 g0
Thus, the function Ty(x, y, ?) at the initial instant is equal to the average value of the initial function of
the initial problem. This is to be expected from intuitive considerations. So, the asymptotic problem of the principal

approximation of the external solution reduces to Eq. (17), boundary conditions for the variables X and Z (3) (it
is easy to perform a similar analysis for boundary conditions that are different from (3)), and the initial condition

Glig =(Tp) = G, (x, ) - (23)

One would expect that the external expansion is of prime interest for practicc because of the larger char-
acteristic time of a variation in the parameters. The value of the internal solution reduces to the construction on
its basis of the expansions required for joining with the solution of the external problem. Using the joining procedure
in the principal approximation of the external solution we were able to obtain a closed problem (independent of
the characteristics of the internal solution). We can attempt to obtain the same result (if we are fortunate) in
subsequent approximations. We note, however, the following interesting aspect of the internal problem. It describes
a rapid (¢ = oEH) process of equalization of the concentration of a substance along the z coordinate transverse to
the layer. Thus, the dimensionless homogenation time (equalization time of the characteristics of the problem along
the z coordinate) in the system is on the order of e,

Final Comments. The proposed transformation of the equation of anisotropic heat conduction is generalized
in a natural manner to the presence of heat sources inside the layer and heat flux through its boundaries z =0 and
z = 1. It is particularly simple to allow for the heat sources when the size scales of these sources are in agreement
the characteristic time scale of the problem. More precisely, in the dimensionless variables of (6), the terms that
describe the heat sources are on the order of 62. In this case, the term eZQ(T, X, ¥, z), which represents the
volumetric heat source, will enter the right-hand side of Eq. (7) while boundary conditions (8) will take the form

oT oT
(Azz ?Z— + SAiz E)
i

2
—eqy (T, x,y),

z=0

2
2z 5z iz axi —&4q (T’ X5 y) s

A or + €A 9T
z=1
where the functions ¢o(T, x, y) and ¢, (T, x, ») describe the heat fluxes at the boundaries of the region. It is easy
to verify that, by following the algorithm described, we will arrive at the following equation of effective thermal
conductivity:

oG _ 3 (~ oG
at "~ ox;

Aij 5;—) + (Q (G’ X5 y)) + 4y (G, X, y) + q (G, X, y)
/

with the same matrix of effective thermal diffusivity that was found before. It is clear that the averaged heat source
Q will depend only on the functions G and the coordinates x and y. It is precisely these arguments that remain in
the function of the heat source in the given equation.

Of definite interest is the representation of asymptotically averaged equations in some other (non-
Cartesian) orthogonal coordinates. Here we give only the corresponding formulas for a layer of Z2=0; Z= H in
the cylindrical coordinates Z, R, and ¢. The basic equation that replaces (7) will be written in the form

831



0z \"rz ar rodp ror "2 9z

9 aT [0 T A, 9T 9 oT A, 9T
- — _ AR i _— — PP
M rop (A‘Pz ar)] te I:rarr (A”' oty 6<P) * rip (A"P ar Ty 6?)} ) (24)

Instead of boundary conditions (8) we have the following conditions:

oT d oT d ar A __oT d or
ez—=~(A —Z)+el:—(A + £ )+—(rA —)+

oT oT A2 aT
—_— z — =
Azz 9z 7=0:1 + ¢ [Arz or + r d(P :|z=0.1 0. (25)

Here the dimensionless coordinate r is related to R in the same manner as x and y are expressed earlier in terms
of X and Y (6), i.e., r= R/L.
Following the scheme presented earlier, we will bring Eq. (24), in view of (25), 1o the form

at  ror

”E_F r dp

oG ) ~ 0G A,, G d (~ 3G Ay, oG
r Ar<p—a—,7+ p ‘&; , (26)

P N
A * rop

where Ay = (Ap) = (AL/ Azz); Ay = (Arp) = (ApzAra/ Azs); App = (App) — (AL./Az). As in deriving Eq. (15), use
was made of some properties of the matrix A,,, more precisely, its positive definiteness and the conditions of
symmetry A,; = A, etc. It can easily be seen that the initial condition for Eq. (26) will be (23), where the arguments
x and y in the function G, should be replaced by r and ¢.

NOTATION

auy and A,,, dimensional z;\nd dimensionless thermal-diffusivity tensors, respectively u, v =1, 2, 3); a.,
scale of thermal-diffusivity tensor; 4;;, effective thermal-diffusivity tensor (i, j=1, 2); G, first term of the expansion
of the temperature in terms of ¢; H, layer thickness; L., scale for the variables X, Y, and R; T, temperature; T;
terms of the expansion of the temperature in terms of ¢ (9); T}, components of the internal expansion of the
temperature in terms of the perturbation ¢ (19); ¢, dimensionless time; X,,, Cartesian coordinates (u = 1, 2, 3); ¢

= H/L,, perturbation; { = t/sz, internal time; 7, dimensional time; {( ), averaging sign.
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